Synthesis of Novel Carbo- and Hetero-polycycles. Part 8. ${ }^{1}$ An Efficient and Convenient Synthesis of Adamantylidenevinylidenecyclopropane Derivatives

Shoji Eguchi * and Motohiro Arasaki
Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Crown ether catalysed dehydrochlorination of 2-chloro-2-ethynyladamantane (3) with Bu ${ }^{\text {to }}$ provided a convenient and efficient method for the synthesis of adamantylidenevinylidene (4). In the presence of olefins (5a-0), compound (4) afforded the corresponding adamantylidenevinylidenecyclopropane derivatives ($\mathbf{6 a - 0}$) in $30-81 \%$ yields.

Unsaturated carbenes such as alkylidene- and vinylidenecarbenes have attracted interest from synthetic as well as theoretical chemists in recent years. ${ }^{2}$ We and others have previously reported a convenient and efficient method for the generation of dialkylidene- and dialkylvinylidene-carbenes via phase-transfer catalysed dehydrohalogenation of the appropriate vinyl bromide, ${ }^{3}$ and prop-2-ynyl and allenyl halides. ${ }^{4}$ Although the fluoride-initiated elimination route of some halogenosilyl precursors has also been developed recently, both for alkylidene- ${ }^{5}$ and vinylidene-carbenes ${ }^{6}$ under neutral conditions, the cyclopropanations of olefinic substrates stable to alkali can be carried out more economically and conveniently by the phase-transfer catalysed generation of the unsaturated carbenes from readily available corresponding halides. We report in this paper an efficient and convenient synthesis of adamantylidenevinylidenecyclopropane derivatives using the phase-transfer catalysed dehydrochlorination of 2-chloro-2ethynyladamantane (3) in the presence of olefinic substrates (5a-o).

Results and Discussion

As the precursor of adamantylidenevinylidene (4), we employed 2-chloro-2-ethynyladamantane (3) because of its ready availability from the corresponding alcohol (2) (Scheme 1). Although both compounds (2) and (3) are known, ${ }^{7}$ we prepared (2) by a modified procedure using commercially available sodium acetylide suspension in xylene \dagger instead of by in situ generation in liquid ammonia. ${ }^{7}$ In order to compare the catalytic effect of crown ethers with quaternary ammonium salts, adamantylidenevinylidenecyclopropanation of styrene (5a) was examined under several conditions by using 18 -crown-6 and benzyltriethylammonium chloride (BTAC) as popular and previously evaluated phase-transfer catalysts. The reaction was carried out by slow addition of the chloride (3) in benzene to a vigorously stirred mixture of alkali (51% aqueous KOH or $\mathrm{Bu}^{\prime} \mathrm{OK}$), benzene, and styrene (5a) in the presence or absence of the catalyst. The results are summarized in Table 1. Under the two-phase reaction conditions using a large excess of 51% aqueous KOH as the base, both BTAC and 18 -crown- 6 gave comparable yields (61.0 and 62.3%) of the cycloadduct (6a) (entries 1 and 2). However, among the reactions using Bu'OK as the base, 18-crown-6 gave a better yield (80.6%) of ($6 a$) than BTAC (59.4%) (entries 3 and 4). The catalytic effect of 18 -crown- 6 and BTAC is apparent from the results of entries 5 and 6. Therefore, the adamantylidenevinylidenecyclopropanation of

[^0]

(2)

(4)

Scheme 1. Reagents: i, $\mathrm{NaC} \equiv \mathrm{CH} / \mathrm{xylene}-\mathrm{THF}$; ii, $\mathrm{H}_{2} \mathrm{SO}_{4}$; iii, Conc. $\mathrm{HCl}-\mathrm{CaCl}_{2}$; iv, Base/phase-transfer catalyst; * see Table 2
the olefinic substrates ($\mathbf{5 b}-\mathbf{0}$) was conducted under the conditions of entry 4 in Table 1 . The results are summarized in Table 2.

All of the reactions afforded the corresponding cycloadducts $(\mathbf{6 b -}-\mathbf{0})$ in moderate to good yields. The products were isolated by preparative t.l.c. (silica gel or alumina) as crystals. The structures of ($\mathbf{6 a - 0}$) were confirmed by spectral and analytical data (Table 3).

A characteristic feature of the products is the appearance of the allenic band at $2000-2020 \mathrm{~cm}^{-1}$ in the i.r. spectra and a broad singlet at $\delta 2.60-2.45(2 \mathrm{H})$ due to the allylic bridgehead protons of adamantane ring in the ${ }^{1} \mathrm{H}$ n.m.r. spectra.

The E-stereochemistry of ($\mathbf{6 b}$) is supported by the coupling constant $J 4.5 \mathrm{~Hz}$ of the $\delta 2.57$ signal due to the benzylic cyclopropane ring proton. The exo-stereochemistry of ($\mathbf{6 d}$) and (6e) was supported by the appearance of characteristic AB quartet signals at $\delta 1.18$ and 0.91 , respectively. The reaction with isoprene ($\mathbf{5 h}$) afforded a 5:1 mixture of regioisomers ($\mathbf{6 h}$) and ($6 \mathbf{h}^{\prime}$) $\left({ }^{1} \mathrm{H}\right.$ n.m.r. analysis, Table 3) but their separation was not successful. The monoterpene olefins ($5 \mathbf{5}-\mathbf{k}$) gave the corresponding cycloadducts ($\mathbf{6 i}-\mathrm{k}$) respectively. Their stereo-

Table 1. Adamantylidenevinylidenecyclopropanation of styrene (5a) under various conditions ${ }^{a}$

Entry	Base (mol)	Catalyst ${ }^{\text {b }}$	Reaction time (h) ${ }^{f}$	Yield (\%) of (6a) ${ }^{\text {g }}$
1	aq. $51 \% \mathrm{KOH}$ (excess)	BTAC ${ }^{\text {c }}$	38.5	61.0
2	aq. $51 \% \mathrm{KOH}$ (excess)	18-C-6 ${ }^{\text {d }}$	62.0	62.3
3	Bu'OK (2.0)	BTAC ${ }^{\text {c }}$	48.0	59.4
4	Bu'OK (2.0)	18-C-6 ${ }^{\text {d }}$	24.0	80.6
5	Bu'OK (2.0)	None	68.5	Trace
6	Bu'OK (2.0)	None ${ }^{e}$	15.5	Trace

${ }^{a}$ All reactions were carried out using 3 mol equiv. of (5a) at room temperature $\left(20-28^{\circ} \mathrm{C}\right)$ under argon in vigorously stirred benzene (see Experimental section). ${ }^{b} 20 \mathrm{~mol} \%$ Used. ${ }^{c}$ Benzyltriethylammonium chloride. ${ }^{d} 18$-Crown-6-ether. ${ }^{e}$ Under ultrasonic irradiation. ${ }^{f}$ The addition time (ca. 1.5 h) of (3) in benzene was included. ${ }^{g}$ Isolated yield of ($6 a$) after preparative t.l.c.

Table 2. Adamantylidenevinylidenecyclopropanation of a variety of olefins (5a-0) ${ }^{a}$

Olefin	Reaction time (h) ${ }^{\text {b }}$	Product	Yield (\%) ${ }^{\text {c }}$	M.p. (${ }^{\circ} \mathrm{C}$)
Styrene (5a) ${ }^{\text {d }}$	24.0	(6a)	80.6	80-82
(E)- β-Methylstyrene (5b)	71.0	(6b)	30.0	55-56
α-Methylstyrene (5c)	18.5	(6c)	57.8	54-55
Norbornadiene (5d)	68.0	(6d)	77.8	103-105
Norbornene (5e)	90.0	(6e)	69.4	175-176
2,3-Dimethylbuta-1,3-diene (5f)	7.0	(6f)	74.5	35-36
2,5-Dimethylhexa-2,4-diene (5g)	67.0	(6g)	74.5	69-71
Isoprene (5h)	18.5	$(6 \mathrm{~h})+\left(6 \mathrm{~h}^{\prime}\right)^{e}$	70.5	40-42
α-Pinene (5i)	39.0	(6i)	52.6	71-72
β-Pinene (5j)	47.5	(6j)	37.9	122-123
Camphene (5k)	48.0	(6k)	57.5	129-131
3,4-Dihydro-2H-pyran (51)	38.0	(61)	75.5	53-55
Ethyl vinyl ether (5m)	24.0	(6m)	77.8	67-69
1-Methoxycyclohexa-1,4-diene (5n)	25.0	(6n)	68.2	62-64
3-Methylbut-2-en-1-ol (50)	22.5	(60)	39.8	115-117

${ }^{a}$ All reactions were carried out at room temperature ($20-28^{\circ} \mathrm{C}$) in vigorously stirred benzene using olefin (10 mol equiv. unless otherwise noted), Bu'OK (2 mol equiv.), 18 -crown-6 ether ($20 \mathrm{~mol} \%$), and (3) (1 mol equiv.) under argon. The products were isolated by preparative t.l.c. (silica gel-hexane unless otherwise noted) (see Experimental section). ${ }^{b}$ The addition time ($c a .1 .5 \mathrm{~h}$) of (3) was included. ${ }^{c}$ Isolated yield. ${ }^{d}$ A 3 mol equiv. amount was used. ${ }^{e}$ A 5:1 mixture of ($6 \mathbf{h}$) and ($6 h^{\prime}$).

(6a) $R^{\prime}=H$
(6c) $R^{\prime}=M e$

(6f)

(6g)

(6 j)

(6n)

(6d)

(6h)

(6k)

(60)

Table 3. Spectral and analytical data of adamantylidenevinylidenecyclopropane derivatives (6a-0)

[^1]chemistry was tentatively assigned as exo on assumption of the less hindered addition of compound (4). Vinyl ether derivatives $(51-n)$ gave generally better yields of the cycloadducts $(61-n)$. No cycloadduct to the olefinic entity of compound ($\mathbf{5 n}$) was formed. These results are in good accord with the electrophilic nature of dialkylvinylidenecarbenes. ${ }^{2}$

The described method of adamantylidenevinylidencyclopropanation requires alkaline conditions but the relative ease with which the derivatives can be obtained demonstrates practical utility for substrates stable to alkali.

Experimental

M.p.s were taken in a sealed tube on a Yanagimoto micromelting point apparatus and are uncorrected. Microanalyses were performed with a Perkin-Elmer 240B elemental analyser. ${ }^{1} \mathrm{H}$ n.m.r. spectra were taken at $25^{\circ} \mathrm{C}$ with a JEOL JNM-C60 HL instrument at 60 MHz using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, i.r. spectra were recorded on a JASCO A-100 spectrometer, and mass spectra were obtained with an ESCO-EMD-05B instrument at 70 eV .

2-Ethynyladamantan-2-ol (2).-A modified procedure using commercial sodium acetylide was employed rather than the literature procedure ${ }^{7}$ of in situ generation in liquid ammonia. An anhydrous THF solution of adamantanone (1) (4.51 g, 30.0 mmol , in 50 ml) was slowly added to a stirred and cooled $\left(15^{\circ} \mathrm{C}\right)$ suspension of sodium acetylide in xylene ($11-15 \%, 40 \mathrm{ml}, 110-$ 150 mmol), during 1 h under nitrogen. The mixture was stirred for 18 h at room temperature and 1 h at $70^{\circ} \mathrm{C}$ [the disappearance of (1) was confirmed by g.l.c. analysis] then cautiously diluted with water (50 ml) under ice-cooling, and then with ether (30 ml). The mixture was acidified with 50% $\mathrm{H}_{2} \mathrm{SO}_{4}$, the organic layer separated, and the aqueous layer extracted with ether ($3 \times 20 \mathrm{ml}$). The combined organic layer and extracts were washed with saturated aqueous sodium chloride, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent evaporated under reduced pressure to give (2) as a white solid ($5.30 \mathrm{~g}, 100 \%$), m.p. $100-102^{\circ} \mathrm{C}$ (Lit., ${ }^{7 a} 102-104{ }^{\circ} \mathrm{C}$), which was practically pure by i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra.

2-Chloro-2-ethynyladamantane (3).-This was prepared by the literature procedure ${ }^{7 a}$ and was obtained as colourless crystals $\left(61 \%\right.$), m.p. $65-66^{\circ} \mathrm{C}\left(\right.$ Lit., $\left.{ }^{7 a} 65-66^{\circ} \mathrm{C}\right)$.

General Procedure for Adamantylidenevinylidenecyclopropanation using Compound (3).-The chloride (3) ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) in benzene (5 ml) was added dropwise to a vigorously stirred mixture of the appropriate olefin (2.57 mmol), Bu'OK (58 mg ,
of 95% reagent of Merck Co., 0.51 mmol), and 18-crown-6 (14 $\mathrm{mg}, 0.051 \mathrm{mmol}$) in benzene (2 ml) over 1.5 h under argon at room temperature ($20-28^{\circ} \mathrm{C}$). Stirring was continued for the appropriate time (t.l.c. monitored, Table 2) and the mixture diluted with water and extracted with hexane or ether $(3 \times 20$ ml). The combined extracts were washed with saturated aqueous sodium chloride, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent evaporated under reduced pressure to give a crude product which was purified by preparative t.l.c. (silica gel or alumina eluting with hexane or hexane-AcOEt system in general, Table 3) to afford the adamantylidenevinylidenecyclopropanes ($6 \mathbf{a}-$ 60).

The adamantylidenevinylidenecyclopropanation of styrene (5a) was also carried out under the conditions summarized in Table 1. In entries 1 and $2,51 \%$ aqueous $\mathrm{KOH}(10 \mathrm{ml})$ was used instead of Bu'OK. The ultrasonic irradiation (entry 6) was conducted with a Branson B-220 ultrasonic cleaner.

References

1 Part 7, S. Eguchi, Y. Furukawa, T. Suzuki, and T. Sasaki, J. Chem. Soc., Perkin Trans. 1, 1988, 719.
2 For reviews, see (a) P. J. Stang, Chem. Rev., 1978, 78, 383; (b) H. D. Hartzler, in 'Carbenes,' eds., R. A. Moss and M. Jones, Jr., WileyInterscience, New York, 1975, vol. 2, ch. 2; (c) P. J. Stang, Acc. Chem. Res., 1978, 11, 107; (d) R. A. Moss, M. Jones, Jr., in 'Reactive Intermediates,' eds., M. Jones, Jr., and R. A. Moss, Wiley, New York, 1978, Vol. 1, p. 73; (e) H. F. Schaefer, III, Acc. Chem. Res., 1979, 12, 288; (f) P. J. Stang, Isr. J. Chem., 1981, 21, 119; (g) H. F. Schuster, G. M. Coppola, 'Allenes in Organic Synthesis,' Wiley-Interscience, New York, 1984.
3 T. Sasaki, S. Eguchi, M. Tanida, F. Nakata, and T. Esaki, J. Org. Chem., 1983, 48, 1579.
4 (a) T. B. Patrick, Tetrahedron Lett., 1974, 1407; (b) S. Julia, D. Michelot, and G. Linstrumette, C.R. Hebd. Seances Acad. Sci., Ser. C, 1974, 1523; (c) T. Sasaki, S. Eguchi, and T. Ogawa, J. Org. Chem., 1974, 39, 1927; (d) T. Sasaki, S. Eguchi, M. Ohno, and F. Nakata, ibid., 1976, 41, 2408; (e) T. B. Patrick, ibid., 1978, 1999; (f) W. E. Keller, 'Phase-Transfer Reactions,' Fluka-Compendium, Vol. 1, Georg Thieme Verlag, Stuttgart, 1986, pp. 30-35.
5 D. P. Fox, J. A. Bjork, and P. J. Stang, J. Org. Chem., 1983, 48, 3994 and references cited therein.
6 S. Eguchi, T. Ikemoto, Y. Kobayakawa, and T. Sasaki, J. Chem. Soc., Chem. Commun., 1985, 958.
7 (a) W. J. le Noble, Der-Ming Chiou, and Y. Okaya, J. Am. Chem. Soc., 1979, 101, 3244; (b) A. G. Yurchenko, Yu. I. Srebsodolskii, R. I. Yurchenko, and I. A. Belko, Zh. Org. Khim., 1981, 17, 1638 (Chem. Abstr., 1981, 95, 186705y).

Received 1st June 1987; Paper 7/951

[^0]: \dagger Fluka catalogue, 1986/87, 71205; Aldrich catalogue, 1986/87, 24957-2.

[^1]: ${ }^{a}$ All compounds were purified on a preparative t.l.c. of silica gel-hexane unless otherwise stated and obtained as crystals (see Table 2). I.r. spectra were scanned in KBr discs. ${ }^{b}$ All ${ }^{1} \mathrm{H}$ n.m.r. spectra were measured in CDCl_{3} unless otherwise stated. Multiplicities and J values (Hz) are given in parentheses. "In $\mathrm{CCl}_{4} \cdot{ }^{d} \mathrm{M}^{+}$ion peaks. ${ }^{e} \mathrm{ca} .17 \%$ of Regioisomer ($6 \mathbf{h}^{\prime}$) was involved. ${ }^{f}$ Peaks due to ($6 \mathbf{h}^{\prime}$) also appeared at $\delta 1.67$ (br s) and 4.70 $(\mathrm{m}) .{ }^{g}$ Stereochemistry assignments should be considered as tentative. ${ }^{h}$ Purified on an alumina plate eluting with hexane. ${ }^{i} \mathrm{D}_{2} \mathrm{O}$ exchangeable 1 H is involved.

